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A m a t h e m a t i c a l  analogy between plate deflect ion under  a t r a n s v e r s e  load and the c i r cu l a to ry  
mot ion of a liquid in a geome t r i ca l l y  s i m i l a r  region is val idated.  A Ga le rk in -me thod  ap-  
p rox imate  analyt ic  solution is given for  the s t r e a m  function in a cy l indr ica l  cavi ty .  

P r o b l e m s  involving na tura l  convection in closed cavi t ies  a re  ve ry  difficult to solve by analyt ic  me th -  
ods at  p r e sen t .  The c i r cu l a to ry  motion produced by na tura l  convection in the liquid within the cavi ty  is 
desc r ibed  by nonl inear  equat ions,  so that r igorous  analyt ic  solution of the p rob lem is only poss ib le  in r a r e  
c a se s ,  with fa i r ly  coa r se  assumpt ions  being made .  Thus n u m e r i c a l  methods have usual ly  been employed  
for  solution of such p rob l ems  in the complete  formula t ion  in r ecen t  s tudies .  With all  the i r  indisputable 
advantages ,  n u m e r i c a l  methods ,  which yield e x t r e m e l y  r ich  informat ion  about the p a r a m e t e r s  of a physica l  
p r o c e s s ,  s t i l l  involve ce r t a in  difficult ies a s soc i a t ed  with approx imat ion  e r r o r s  introduced by dif ference 
s chemes  and with p rob l ems  of s tabi l i ty  and convergence  of such s c h e m e s .  In solving such p r o b l e m s ,  
t he re fo re ,  it is evidently des i rab le  to cons ider  analyt ic  methods of invest igat ion in addition to numer i ca l  
techniques .  
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Fig.  1. Qual i ta t ive s t r eaml ine  pa t t e rn  in ve s se l  
for  sma l l  Grashof  number s ,  quas i - s t a t i ona ry  con- 
di t ions.  

F ig .  2. Var ia t ion in e x t r e m u m  value of s t r e a m  
function: the solid line r e p r e s e n t s  the analyt ic  
solution; the dots r e p r e s e n t  the n u m e r i c a l  solu-  
t ion. 
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To bring out the e s sence  of our  approach,  let  us f i r s t  look at  the p rob lem of c i r cu la to ry  motion of a 
liquid in a plane r ec t angu la r  cavi ty .  The liquid is caused to move by the na tura l  convection which a r i s e s  
with a change in the t h e r m a l  conditions at  the side wails of the cavi ty .  No heat  is added or  sub t rac ted  at  
the f ree  sur face  of the liquid or  a t  the bot tom,  while t h e r m a l  boundary conditions of the second kind are  
p r e s c r i b e d  at  the side wails;  the speci f ic  heat  flux q a t  these wails is a s s u m e d  to be constant  in t ime .  

Under quas i - s t a t i ona ry  conditions,  when the veloci ty field in the liquid does not va ry  in t ime,  the 
equation for  the s t r e a m  function that c h a r a c t e r i z e s  the intensi ty of mot ion of the v i scous - incompress ib le  
liquid has the f o r m  

_ _  a~p  g{~ aT 
axi ax ia l  @.2 v @ 

l (aco o a~o a ] [a ,~  a~co~ (~) 

with the following boundary conditions: 

for x = O  e=O,  O~lOx=O;  

x = H  ~ = 0 ,  O~/ax 2 = 0 ;  

y = O  flo=O, O~/Oy=O; 

y = B ~ =0,  O~l@ =O. 

(2) 

When the liquid is heated through the side wall,  c i r cu la to ry  motion appea r s  in the cavi ty  with the 
pa r t i c l e s  of liquid moving upward  a t  the hea ted  wait  and descending a t  the cen te r  of the cavi ty .  F igure  1 
qual i ta t ively i l lus t ra tes  the s t r eaml ine  pa t t e rn  in the s y m m e t r i c  por t ion of the cavi ty .  

If the s t r e a m l i n e s  of Fig .  1 a r e  in t e rp re ted  as geodes ic  l ines ,  then the profi le  of the s t r e a m  function 
(p will be analogous to the profi le  of a geomet r i ca l ly  s i m i l a r  plate deflected by a t r a n s v e r s e  load. Fo r  the 
given case  this analogy has a quite r igorous  ma thema t i ca l  foundation [1], s ince the equation for  the def lec-  
tion of a r ec tangu la r  plate under  a t r a n s v e r s e  load has the s ame  f o r m  as (1); the analog of the k inemat ic -  
v i scos i ty  coeff ic ient@ in our  case  is the cyl indr ica l  r ig idi ty  of the plate .  The boundary  conditions fo r  the 
s t r e a m  function (p [Eqs. (2)] m a y  also  be in te rp re ted  as the conditions for  r igid c lamping and hinge suppor t  
of the plate [1]. 

F o r  the a x i s y m m e t r i c  region cor responding  to a cavi ty  in a cyl indr ica l  ves se l  there  is a l so  an analogy 
between the profi le  of the s t r e a m  function $ and the deflection of a r ec tangu la r  plate,  but here  the plate 
m u s t  be t r ea t ed  as having var iab le  f lexura l  r igidi ty,  i . e . ,  the plate th ickness  may  va ry  in the d i rec t ion  
cor responding  to the rad ia l  d i rec t ion in the cyl indr ica l  cavi ty .  

F o r  quas i - s t a t i ona ry  condit ions,  the c i r cu la to ry  motion of the liquid in a cyl indr ica l  ve s se l  will be 
desc r ibed  by a di f ferent ia l  equation fo rm,  

L ( ~ ) =  r L oz \ ur r Or Oz Oz 2 

~ Or \ r  Or I J - : - [ H - ] O ~ - L r  o~z' 

+ ? - \ t f s  a?t. & * \ r  &'~.~ 
a 1 o _ a  /1  a ~  R ae 

- ~  - r - =  I = -  - ~  - - o r * - - . -  = o ,  ( 3 )  
' Or r Or Or ~r, ~-r ] " H Or 

where  the t e r m  containing the rad ia l  t e m p e r a t u r e  gradient  will a lso  be t ime- independent  by vir tue of the 
t he rma l  quas i - s t a t i ona r i t y .  The function r should sa t i s fy  boundary conditions of the f o r m  

for z = 0  ~ = 0 ,  ~ l a z = O ;  

z =  1 r = O, O2~plOz 2 = O; 

7-=0 3 = 0 ,  O,/Or=O; (4) 

r =  i ~ =o, a~lOT=o. 
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On the basis of the analogy with plate deflection we use the analytic Galerkin method, which has been 
quite well worked out for  problems of s t ruc tura l  mechanics ,  to solve (3) with the boundary conditions (4). 
We specify a function of two variables  in the fo rm 

= Af (z, 7) =AZ (3 - -  5z-l- 2z 2) r 2 (1 --))2, (5) 

that will sat isfy the boundary conditions in the form (4) while qualitatively ref lect ing the nature of the c i r -  
culatory motion of the liquid in the vesse l .  The solution now reduces to determinat ion of the coefficient A. 
To do this, we use the Galerkin-method procedure  

1 1 

S ,i 'L [A[(z, r)] [(~, 7) rd rdz = 0. (6) 
o 0 

Taking the dependence corresponding  to quas i - s ta t ionary  thermal  conditions in the motionless Liquid 
as the f i r s t  approximation of the radial  tempera ture  gradient,  we obtain 

A = - - 7 7 G  1-k R 77G ~ ' 

a f ter  cer tain calculat ions,  where 

We note that an ex t remum of the s t r eam function ~-, taken in the form (5), is reached at z = 0.578, [~ = 0.5 
and equals ~* = 0.0163 A. The approximate analytic solution yields a dependence for the ex t remum value 
of the s t r eam function ~. that is in fair ly good agreement  with the resul ts  of the numer ica l  solution (Fig. 2) 
for  c i rcu la tory  motion of fair ly low intensity (up to Gr* = 103); here  the symmet ry  of the pat tern of s t r e a m -  
function distr ibution is still  p rese rved ,  and there is little shift in its ex t remum with respec t  to the center  
of the given cavity c ross  sect ion.  As Gr* increases ,  the s y m m e t r y  of motion is destroyed,  the center  of 
the vortex shifts,  the s t reamline  is distorted,  and there are  secondary  vort ices  with r eve r se  motion. In 
this case the mathemat ica l  analogy with the deflection plate loses its c lar i ty  and becomes difficult to use .  
Then the basic  means of investigating the process  becomes the numer ica l  solution of the given problem.  

In par t icu lar ,  the numer ica l  resul ts  of Fig.  2 were obtained by integrat ing a sys tem of par t ia l  dif- 
ferent ia l  equations of the parabolic  type in the given region; these equations charac te r ize  the t r ans fe r  of 
energy and momentum in conjunction with the elliptic differential  equation for  the s t r eam function. Sucha 
mathemat ica l  descr ipt ion of the na tura l -convect ion  process  in a ve r t i ca l -ax i symmet r ic  vesse l  is equivalent 
to a descr ipt ion by (3) in opera to r  fo rm.  The numer ica l  solution was obtained for  a grid region containing 
41 x 41 node points; an adjustment method was used with the t r ans fe r  equations being integrated by means 
of an explicit  f ini te-difference scheme with the convective t e rms  of the equations being approximated by 
differences oriented against  the flow. The elliptic equation was integrated by an implici t  f ini te-difference 
scheme in conjunction with the procedure  of s ca l a r  d ispers ion with respec t  to variable di rect ions .  

To conclude, we note that the approximate analytic solution obtained for  the s t r eam function with a 
na tura l -convect ion  p rocess  of low intensity enables us to evaluate the tempera ture  and concentrat ion dis-  
tributions of ma t te r  within the liquid volume for  complex heat and m a s s - t r a n s f e r  p rocesses  in the presence  
of natural  convection (for example,  dissolution of gases  in a liquid par t ia l ly  filling a cyl indr ical  vessel) 
without going through the laborious calculations of the velocity fields which require much machine t ime.  

NOTATION 

fl is the coefficient of bulk thermal expansion of the liquid; q is the specific heat flux at the vessel 
wall; x, y and z, r are the coordinates in the Cartesian and cylindrical systems; q~ and $ are the stream 
functions in rectangular and cylindrical cavities; H is the height of the liquid level in the cavity; B is half 
the width of the rectangular cavity; R is the radius of the cylindrical cavity; T is the temperature; g is 
the acceleration of the mass-force field; v is the kinematic-viscosity coefficient; k is the thermal-conduc- 
tivity coefficient of the liquid; A is the coefficient in Eq. (5) for the stream function; G is a coefficient in 
(7) that depends on the geometry of the cylindrical cavity; L( ) is a differential operator; we have the fol- 
lowing dimensionless parameters: ~- = r e = T/(qR/k), z = z/H, r = r/R; Gr* = gp(qR/k)R3/v 2 is a 
modified Grashof number. 
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